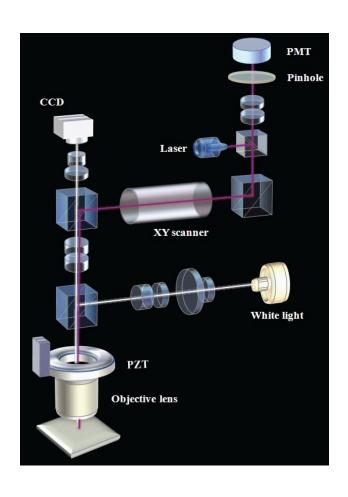
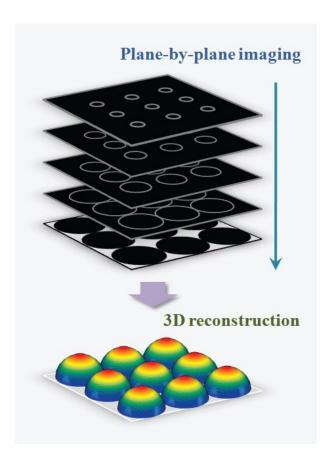

High Speed 3D Confocal Laser Scanning Module

NS-3800

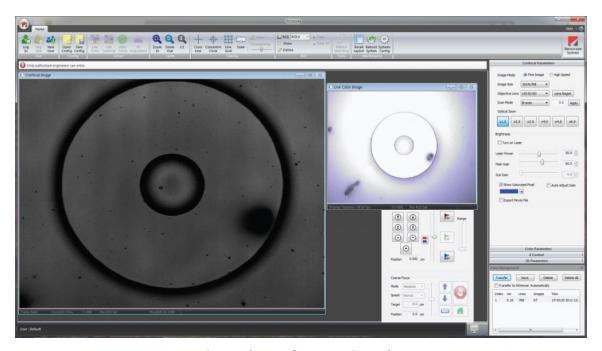




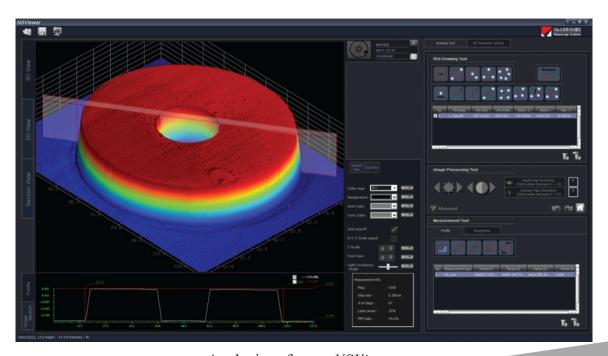
Measurement principle

NS-3800 provides a color CCD image and a laser scanning confocal image at one time.

The height measuring ability comes from the confocal arrangement of a source, a sample, and a detector. By the out-of-focus signal rejection of confocal technique, only the in-focus signal is collected by a photo detector. It gives the optical sectioning ability to confocal microscope NS-3800. The confocal aperture also improves the imaging quality by rejecting the noise outside the focal point.

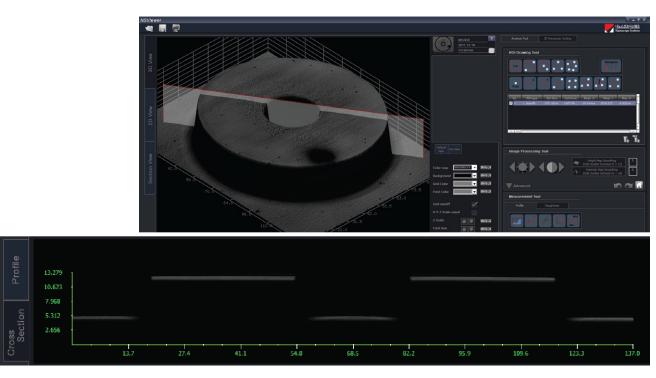


To get the 3D surface profile of the sample, optically sectioned plane-images are collected along the z-axis. As the light intensity becomes its maximum when the sample surface is placed in the focal plane, axial coordinates of sample surface can be directly found.

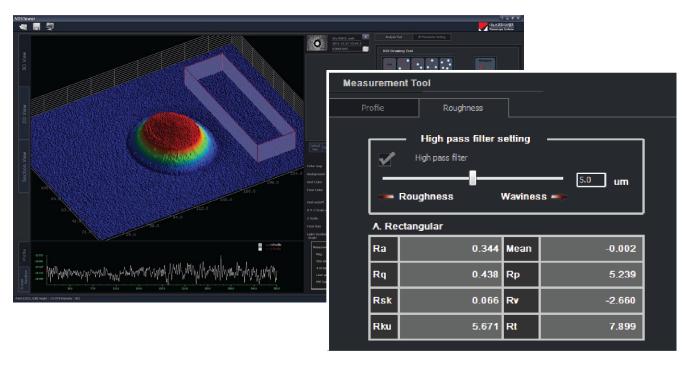

With a violet laser, a photo-multiplier tube (PMT), and a piezoelectric axial scanner, NS-3800 performs the confocal optical sectioning in a most reliable manner

User interface software NSWorks & NSViewer

- Simple and plain operation even to a first-time user.
- A CCD image, a confocal image, and a main control panel are displayed in one operation window.
- Various adjustable parameters are provided for the advanced application.
- A real-time confocal image provides the immediate feedback from hardware.
- Separated analysis window with the convenient graphical reporting tools.
- The 3D graphical view makes a user easily recognize the microscopic structure of a sample.



< Operation software NSWorks >



Analysis of measurement

Cross-sectional image is directly converted to the 3D profile data. User can see the raw cross-sectional image in *NSViewer*. The internal structure can be imaged through the semi-transparent surface layers, which is uniquely realized only by confocal microscopy. The analysis of the measured data can be easily performed with various function tools.

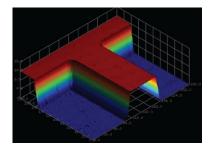

< Cross sectional image display>


< Roughness measurement for specified ROI (region of interest)>

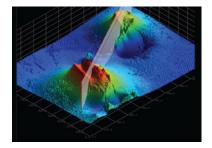
Most reliable optical 3D measurement

NS-3800 can be used for most kinds of 3D profiling applications. The 3D measurement of NS-3800 is based on the most reliable real-time confocal image definitely superior to the image from other optical technologies.

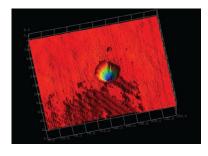
< Height measurement of the material of very low reflectivity >

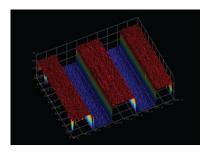

< High contrast image of a patterned sapphire wafer substrate (PSS)>

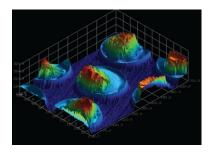
Application field

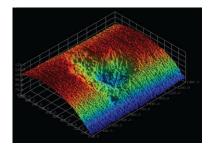

NS-3800 is a promising solution for the measurement of height, width, angle, area, and volume of micro and submicro structures such as

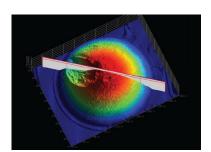
- Semiconductor IC pattern, bump height, wire loop height, defect inspection, CMP process
- FPD product Touch panel screen inspection, ITO pattern, LCD column spacer height
- MEMS device 3D profile of structure, surface roughness, MEMS pattern
- Glass surfaces Thin film solar cell, solar cell texture, laser pattern
- Material researches Tooling surface inspection, roughness, crack analysis

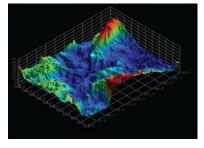

Sample images

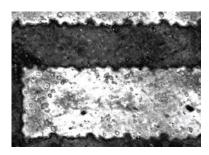

VLSI height standard FOV: 280 × 210 µm (50×)


OLED glass protrusion FOV : 280 × 210 μm (50×)

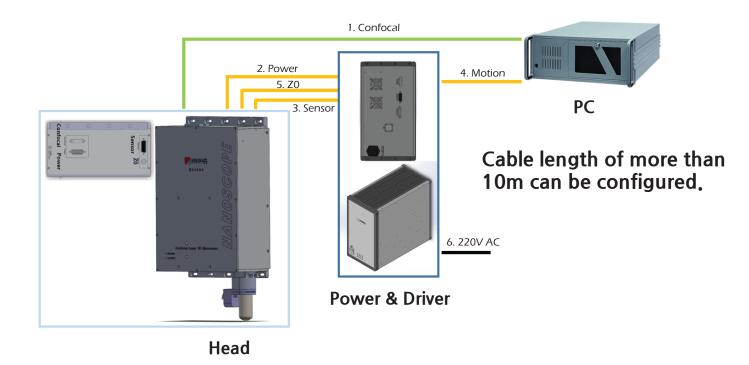

OLED laser processing FOV: 280 × 210 μm (50×)


Quartz pattern FOV : $280 \times 210 \mu m (50 \times)$

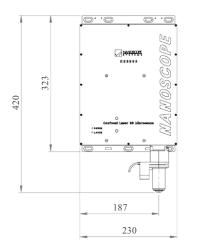

 $\begin{array}{c} Diamond \\ FOV : 700 \times 525 \mu m \, (20 \times) \end{array}$


Metal pillar FOV : $1400 \times 1050 \mu m (10 \times)$

 $\begin{array}{c} Bump \\ FOV : 280 \times 210 \; \mu m \; (50 \times) \end{array}$

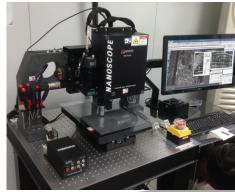

Graphene FOV: 280 × 210 μm (50×)

 $\begin{array}{c} ITO \ pattern \\ FOV \ : 1400 \times 1050 \ \mu m \ (10 \times) \end{array}$


Industrial module application

Easy-to-install, and robust design for industrial equipment provides a good solution to the field applications. Customized design change is available.

Head dimensions


[Unit: mm]

Installation cases

Specifications

Model	Head module	NS-3800 NS-3500E					Remark
	Controller						
Objective lens magnification		10×	20×	50×	100×	150×	
Observation / Measuring range	Horizontal (H): μm	1400	700	280	140	93	
	Vertical (V): μm	1050	525	210	105	70	
Working distance: mm		16.5	3.1	0.54	0.3	0.2	
Numerical aperture (N.A.)		0.30	0.46	0.80	0.95	0.95	
Optical zoom		×1 to ×6					
Total magnification		178× to 26700×					
Optical system for observation / measurement		Pinhole confocal optical system					
Height measurement	Measuring scan range	Fine scan: 100 µm (and/or) Long scan: 7 mm [NS-3800-L]					Note 1
		Fine scan: 400 µm (and/or) Long scan: 10 mm [NS-3800-D]					
		Fine scan : 200 μm (or) Long scan : 10 mm [NS-3800-T]					
	Display resolution	0.001 μm					
	Repeatability σ	0.010 μm					Note 2
Width measurement	Display resolution	0.001 μm					
	Repeatability 3σ	0.02 μm					Note 3
Frame memory	Pixel count	1024×768, 1024×384, 1024×192, 1024×96					
	For confocal image	12 bit					
	For color image	8-bit for RGB each					
	For height measurement	16 bit					
Frame rate	Surface scan	20 Hz to 160 Hz					
	Line scan	~8 kHz					
Auto function		Auto focus					
Laser beam light source for confocal measurement	Wavelength	Violet laser, 405 nm					
	Output	~2 mW					
	Laser Class	Class 3b					
Laser light-receiving element		PMT (photomultiplier tube)					
Data processing unit		Dedicated PC					
Power supply	Power-supply voltage	100 to 240 VAC, 50/60 Hz					
	Current consumption	500 VA max.					
Weight	Microscope	Approx. ~ 8 kg					
	Controller	~8 kg					

Note 1: Fine scan is performed by piezoelectric actuator (PZT).

Dual scan mode by *fine* and *long* scanner is available only for single lens type.

Note 2: 100 times measurement of standard sample (1 μ m step height) with 100× / 0.95 objective. Note 3: 100 times measurement of standard sample (5 μ m pitch) with 100× / 0.95 objective.

